Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 12: 878675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35530351

RESUMO

Background: Treatment of locally advanced HPV-negative head and neck squamous cell carcinoma (HNSCC) with photon radiation is the standard of care but shows only moderate success. Alterations in response toward DNA DSB repair, apoptosis, and senescence are underlying determinants of radioresistance in the tumor cells. Recently, senescence and the associated secretory phenotype (SASP) came into the focus of research and raised the need to identify the tumor-promoting molecular mechanisms of the SASP. The aim of this project was to unravel more of this process and to understand the impact of the IL1 pathway, which plays a major role in SASP. The studies were performed for photon and 12C-ion irradiation, which strongly vary in their effect on radioresistance. Materials and Methods: A panel of five HPV-negative HNSCC cell lines was treated with photon and 12C-ion irradiation and examined for clonogenic survival, DNA DSB repair, and senescence. SASP and IL1 gene expressions were determined by RNA sequencing and activation of the IL1 pathway by ELISA. A functional impact of IL1A and IL1B was examined by specific siRNA knockdown. Results: Cell killing and residual DSBs were higher after 12C-ion than after photon irradiation. 12C-ion induced more senescence with a significant correlation with cell survival. The impact on radioresistance appears to be less than after photon irradiation. The expression of SASP-related genes and the IL1 pathway are strongly induced by both types of irradiation and correlate with radioresistance and senescence, especially IL1A and IL1B which exhibit excellent associations. Surprisingly, knockdown of IL1A and IL1B revealed that the IL1 pathway is functionally not involved in radioresistance, DSB repair, or induction of senescence. Conclusions: IL1A and IL1B are excellent indicators of cellular radioresistance and senescence in HNSCC cells without functional involvement in these processes. Clearly more research is needed to understand the molecular mechanisms of senescence and SASP and its impact on radioresistance.

2.
Chem Commun (Camb) ; 56(54): 7407-7410, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32530008

RESUMO

Merocyanine-triarylamine bichromophores are readily synthesized by sequentially Pd-catalyzed insertion-alkynylation-Michael-Suzuki four-component reactions. White-light emissive systems form upon aggregation in 1 : 99 and 0.1 : 99.9 vol% CH2Cl2-cyclohexane mixtures, ascribed to aggregation-induced dual emission (AIDE) in combination with partial energy transfer between both chromophore units as supported by spectroscopic studies.

3.
Cancers (Basel) ; 11(7)2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31262047

RESUMO

About 95% of patients with Glioblastoma (GBM) show tumor relapse, leaving them with limited therapeutic options as recurrent tumors are most often resistant to the first line chemotherapy standard Temozolomide (TMZ). To identify molecular pathways involved in TMZ resistance, primary GBM Stem-like Cells (GSCs) were isolated, characterized, and selected for TMZ resistance in vitro. Subsequently, RNA sequencing analysis was performed and revealed a total of 49 differentially expressed genes (|log2-fold change| > 0.5 and adjusted p-value < 0.1) in TMZ resistant stem-like cells compared to their matched DMSO control cells. Among up-regulated genes, we identified carbonic anhydrase 2 (CA2) as a candidate gene correlated with glioma malignancy and patient survival. Notably, we describe consistent up-regulation of CA2 not only in TMZ resistant GSCs on mRNA and protein level, but also in patient-matched clinical samples of first manifest and recurrent tumors. Co-treatment with the carbonic anhydrase inhibitor Acetazolamid (ACZ) sensitized cells to TMZ induced cell death. Cumulatively, our findings illustrate the potential of CA2 as a chemosensitizing target in recurrent GBM and provide a rationale for a therapy associated inhibition of CA2 to overcome TMZ induced chemoresistance.

4.
Biosci Rep ; 39(6)2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31142630

RESUMO

Due to poor prognosis of glioblastoma (GBM), there is an urgent need to develop new therapeutic strategies. Besides eliminating GBM tumor cells and stem cells, a novel therapeutic approach aims to target Glioma-associated microglia/macrophages (GAMs). We investigated the molecular profile of GAMs correlated with patient prognosis by exploiting M1/M2-like polarization markers in a cohort of 20 GBM patients. Using quantitative PCR (qPCR), the markers CXCL10 (M1) and CCL13 (M2) were validated in human macrophages and applied to a global analysis of GBM tissue. Furthermore, proteinase genes, known to be associated with GBM progression (ADAM8, MMP9, MMP14, ADAM10, ADAM17), were analyzed in correlation to M1/M2 markers. Notably, expression levels of ADAM10 and ADAM17 are significantly correlated with an M1-like phenotype and are positively associated to patient survival. Whilst ADAM8 mRNA expression was equally correlated with M1- and M2-like markers, genes for MMP9 and MMP14 are significantly associated with an M2-like phenotype and association to impaired prognosis in the GBM patient cohort. Thus, we provide a robust and reliable combination of qPCR markers to characterize global microglia/macrophage status and the associated proteinase profiles in GBM patients that can be used to analyze the tumor microenvironment, the patients' prognosis and preselect those GBM patients for which targeting the microglia/macrophage population by repolarization might be beneficial.


Assuntos
Glioblastoma/genética , Macrófagos/metabolismo , Microglia/metabolismo , Microambiente Tumoral/genética , Proteínas ADAM/genética , Proteína ADAM10/genética , Proteína ADAM17/genética , Adulto , Idoso , Secretases da Proteína Precursora do Amiloide/genética , Linhagem Celular Tumoral , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/patologia , Humanos , Ativação de Macrófagos/genética , Macrófagos/patologia , Masculino , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Proteínas de Membrana/genética , Microglia/patologia , Pessoa de Meia-Idade , Fenótipo , Prognóstico
5.
Cell Rep ; 26(13): 3672-3683.e7, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917320

RESUMO

Glioblastoma (GBM) is highly refractory to therapy and associated with poor clinical outcome. Here, we reveal a critical function of the promitotic and adhesion-mediating discoidin domain receptor 1 (DDR1) in modulating GBM therapy resistance. In GBM cultures and clinical samples, we show a DDR1 and GBM stem cell marker co-expression that correlates with patient outcome. We demonstrate that inhibition of DDR1 in combination with radiochemotherapy with temozolomide in GBM models enhances sensitivity and prolongs survival superior to conventional therapy. We identify a 14-3-3-Beclin-1-Akt1 protein complex assembling with DDR1 to be required for prosurvival Akt and mTOR signaling and regulation of autophagy-associated therapy sensitivity. Our results uncover a mechanism driven by DDR1 that controls GBM therapy resistance and provide a rationale target for the development of therapy-sensitizing agents.


Assuntos
Proteínas 14-3-3/metabolismo , Proteína Beclina-1/metabolismo , Neoplasias Encefálicas/metabolismo , Receptor com Domínio Discoidina 1/metabolismo , Glioblastoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Autofagia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Linhagem Celular , Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Humanos , Masculino , Camundongos , Camundongos Nus , Prognóstico , Tolerância a Radiação , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
6.
Chem Biodivers ; 16(4): e1900012, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30773842

RESUMO

Two lipophilic derivatives of formycin A (1) and formycin B (5) carrying an O-2',3'-(ethyl levulinate) ketal group have been prepared. These were base-alkylated at N(1) (for 1) and N(1) and N(6) (for 5) with both isopentenyl and all-trans-farnesyl residues. Upon the prenylation, side reactions were observed, resulting in the formation of nucleolipids with a novel tricyclic nucleobase (→4a, 4b). In the case of formycin B, O-2',3'-(ethyl levulinate) (6) farnesylation gave the double prenylated nucleolipid 7. All new compounds were characterized by 1 H-, 13 C-, UV/VIS and fluorescence spectroscopy, by ESI-MS spectrometry and/or by elemental analysis. Log P determinations between water and octanol as well as water and cyclohexane of a selection of compounds allowed qualitative conclusions concerning their potential blood-brain barrier passage efficiency. All compounds were investigated in vitro with respect to their cytotoxic activity toward rat malignant neuroectodermal BT4Ca as well as against a series of human glioblastoma cell lines (GOS 3, U-87 MG and GBM 2014/42). In order to differentiate between anticancer and side effects of the novel nucleolipids, we also studied their activity on PMA-differentiated human THP-1 macrophages. Here, we show that particularly the formycin A derivative 3b possesses promising antitumor properties in several cancer cell lines with profound cytotoxic effects partly on human glioblastoma cells, with a higher efficacy than the chemotherapeutic drug 5-fluorouridine.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Formicinas/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Formicinas/síntese química , Formicinas/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Ratos , Relação Estrutura-Atividade , Células Tumorais Cultivadas
7.
J Steroid Biochem Mol Biol ; 187: 88-96, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30439415

RESUMO

Although the molecular mechanisms underlying the formation of pituitary adenomas are largely unknown, it is clear that estrogen plays a key role in the pathogenesis of pituitary adenomas. Though this is exemplified by an investigation of fulvestrant in the pituitary adenoma cell line GH3, no systematic studies on the effects of selective estrogen receptor modulators (SERMs) on functional properties of pituitary adenoma cell lines to modulate cell migration, cell invasion, and cell survival are available. Here we analyzed the effects of fulvestrant and three SERMs, bazedoxifene, clomifene, and raloxifene, on pituitary adenomas cell lines AtT20, TtT/GF, and GH3. In cell survival assays, clomifene was shown to be the most potent compound in all three cell lines with IC50 values ranging between 2, 6, and 10 µM, respectively, depending on the cell type. Raloxifene and bazedoxifene were also effective but to a lower extent. Also, all SERMs affected migratory and invasive behavior of pituitary adenoma cells. Mechanistically, treatment of cells with SERMs caused cell apoptosis, as demonstrated by Caspase 3/7 activity and western blot assays. In addition, western blots demonstrate activation of p53 in TtT/GF cells and loss of ERK1/2 activation in AtT20 cells. In contrast, fulvestrant was only effective in GH3 cells. Thus, the general applicability of SERMs for pituitary adenoma cells might be promising in clinical applications for the treatment of pituitary adenomas.


Assuntos
Adenoma/tratamento farmacológico , Antagonistas do Receptor de Estrogênio/farmacologia , Fulvestranto/farmacologia , Invasividade Neoplásica/prevenção & controle , Neoplasias Hipofisárias/tratamento farmacológico , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Adenoma/metabolismo , Adenoma/patologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Invasividade Neoplásica/patologia , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia
8.
FEBS Lett ; 592(12): 2023-2031, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29749098

RESUMO

Maintenance of chromosomal telomere length is a hallmark of cancer cells and a prerequisite for stemness. In 85-90% of all human cancers, telomere length maintenance is achieved by reactivation of telomerase, whereas in the remaining 10-15% cancers, alternative lengthening of telomeres (ALT) is observed. Reactivation of telomerase occurs by various mechanisms, one of which is accumulation of point mutations in the promoter region of the gene encoding the protein subunit hTERT. There are numerous studies linking either hTERT overexpression or the presence of hTERT mutations to an aggressive phenotype of several human cancers. Recent findings demonstrate that hTERT expression is not only associated with replicative immortality, but also with cancer cell motility and stem cell phenotype. However, the mechanisms by which hTERT affects cancer cell migration, invasion, and distant metastasis on the one hand, and stemness and resistance on the other hand, are still poorly understood. Within this review, we aim to provide an overview on the functional involvement of hTERT in these cellular processes, focusing on metastasis formation and maintenance of stemness in different human cancers.


Assuntos
Metástase Neoplásica/genética , Células-Tronco Neoplásicas/metabolismo , Telomerase/genética , Movimento Celular , Proliferação de Células , Humanos , Fenótipo , Mutação Puntual , Regiões Promotoras Genéticas , Telomerase/metabolismo , Homeostase do Telômero
9.
J Neuropathol Exp Neurol ; 76(10): 838-847, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28922853

RESUMO

Glioblastoma (GBM) is the most common malignant primary brain tumor. It still carries a grim prognosis and new therapies are needed. This review summarizes the current status of mechanistic insights into the function of extracellular regulated kinase (ERK) and its potential as a therapeutic target for patients with GBM. Currently, some promising ERK inhibitors are in clinical trials in tumor entities other than GBM. Here, we provide a comprehensive overview on the functions of ERK1/2 in GBM and a rationale for treatment of GBM with ERK inhibitors.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/terapia , Inibidores Enzimáticos/uso terapêutico , Glioblastoma/terapia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...